Abstract:
For three-dimensional vortex motion, a linear mathematical model with random coefficients is considered, and formulas for the first two moment functions of solutions are derived. The conditions are found under which a linear chaotic resonance occurs; i.e., the mean angular velocity of the motion increases. The results show that the energy of the vortex increases because of the chaotic motions present in the flow.
Key words:chaotic resonance, variational derivative, vortex motion, mathematical expectation, second moment function, characteristic functional.