RUS  ENG
Full version
JOURNALS // Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki // Archive

Zh. Vychisl. Mat. Mat. Fiz., 2013 Volume 53, Number 6, Pages 853–856 (Mi zvmmf9835)

This article is cited in 3 papers

Modifying a numerical algorithm for solving the matrix equation $X+AX^TB=C$

Yu. O. Vorontsov

M. V. Lomonosov Moscow State University, Faculty of Computational Mathematics and Cybernetics

Abstract: Certain modifications are proposed for a numerical algorithm solving the matrix equation $X+AX^TB=C$. By keeping the intermediate results in storage and repeatedly using them, it is possible to reduce the total complexity of the algorithm from $O(n^4)$ to $O(n^3)$ arithmetic operations.

Key words: matrix equation, periodic QZ algorithm.

UDC: 519.6

Received: 24.12.2012

DOI: 10.7868/S0044466913060227


 English version:
Computational Mathematics and Mathematical Physics, 2013, 53:6, 677–680

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026