This article is cited in
1 paper
Estimation of the remainder of a cubature formula on a Chebyshev grid
V. A. Abilov,
M. K. Kerimov Daghestan State University
Abstract:
Let
$C(Q)$ denote the space of continuous functions
$f(x,y)$ in the square
$Q=[-1,1]\times[-1,1]$ with the norm
\begin{equation}
\| f\|=\max(|(f(x,y)|),
\quad
(x,y)\in Q
\end{equation}
On a Chebyshev grid, a cubature formula of the form
\begin{eqnarray}
&\int_{-1}^1\int_{-1}^1\frac{1}{\sqrt{(1-x^2)(1-y^2)}}f(x,y)dxdy=
\\
&\frac{\pi^2}{mn}\sum_{i=1}^n\sum_{j=1}^mf\big (\cos\frac{2i-1}{2n}\pi,cos\frac{2j-1}{2m}\pi\big )+R_{m,n}(f)
\end{eqnarray}
is considered in some class
$H(r_1,r_2)$ of functions
$f\in C(Q)$, defined by a generalized shift operator. The remainder
$R_{m,n}(f)$ is proved to satisfy the estimate:
$$
\sup_{f\in H(r_1,r_2)}| R_{m,n}(f) |=O(n^{-r_1+1}+m^{-r_2+1})
$$
where $r_1,r_2>1,\lambda^{-1}\leq n/m\leq\lambda,\lambda>0$; and the constant in
$O(1)$, depends on
$\lambda$. Библ. 4.
Ключевые слова: кубатурная формула, чебышевская сетка, оценка остаточного члена.
UDC:
519.651 Received: 21.03.2012