RUS  ENG
Full version
JOURNALS // Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki // Archive

Zh. Vychisl. Mat. Mat. Fiz., 2011 Volume 51, Number 9, Pages 1630–1644 (Mi zvmmf9540)

This article is cited in 11 papers

Lower bounds on the convergence rate of the Markov symmetric random search

A. S. Tikhomirov

Novgorod State University, ul. Bol’shaya Sankt-Peterburgskaya 41, Velikiy Novgorod, 173003 Russia

Abstract: The convergence rate of the Markov random search algorithms designed for finding the extremizer of a function is investigated. It is shown that, for a wide class of random search methods that possess a natural symmetry property, the number of evaluations of the objective function needed to find the extremizer accurate to cannot grow slower than $|\ln\varepsilon|$.

Key words: random search, global optimization, stochastic optimization, estimate of convergence rate.

UDC: 519.626

Received: 08.06.2010
Revised: 09.03.2011


 English version:
Computational Mathematics and Mathematical Physics, 2011, 51:9, 1524–1538

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026