Abstract:
Finding the zeros of a nonlinear equation is a classical problem of numerical analysis which has various applications in many science and engineering. In this problem we seek methods that lead to approximate solutions. Sometimes the applications of the iterative methods depended on derivatives are restricted in Physics, chemistry and engineering. In this paper, we propose two iterative formulas without derivatives. These methods are based on the central-difference and forward-difference approximations to derivatives. The convergence analysis shows that the methods are cubically and quadratically convergent respectively. The best property of these schemes are that they are derivative free. Several numerical examples are given to illustrate the efficiency and performance of the proposed methods.