RUS  ENG
Full version
JOURNALS // Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki // Archive

Zh. Vychisl. Mat. Mat. Fiz., 2011 Volume 51, Number 1, Pages 39–43 (Mi zvmmf8044)

This article is cited in 20 papers

A modification of one method for solving nonlinear self-adjoint eigenvalue problems for hamiltonian systems of ordinary differential equations

A. A. Abramov

Dorodnicyn Computing Center, Russian Academy of Sciences, ul. Vavilova 40, Moscow, 119333 Russia

Abstract: A modification of the method proposed earlier by the author for solving nonlinear selfadjoint eigenvalue problems for linear Hamiltonian systems of ordinary differential equations is examined. The basic assumption is that the initial data (that is, the system matrix and the matrices specifying the boundary conditions) are monotone functions of the spectral parameter.

Key words: Hamiltonian system of ordinary differential equations, nonlinear eigenvalue problem, eigenvalue.

UDC: 519.626

Received: 01.06.2010


 English version:
Computational Mathematics and Mathematical Physics, 2011, 51:1, 35–39

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026