RUS  ENG
Full version
JOURNALS // Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki // Archive

Zh. Vychisl. Mat. Mat. Fiz., 2008 Volume 48, Number 11, Pages 1923–1931 (Mi zvmmf79)

This article is cited in 2 papers

Localization of the eigenvalues of a pencil of positive definite matrices

I. E. Kaporin

Dorodnicyn Computing Center, Russian Academy of Sciences, ul. Vavilova 40, Moscow, 119333, Russia

Abstract: Let $A$ and $B$ be real square positive definite matrices close to each other. A domain $S$ on the complex plane that contains all the eigenvalues $\lambda$ of the problem $Az=\lambda Bz$ is constructed analytically. The boundary $\partial S$ of $S$ is a curve known as the limacon of Pascal. Using the standard conformal mapping of the exterior of this curve (or of the exterior of an enveloping circular lune) onto the exterior of the unit disc, new analytical bounds are obtained for the convergence rate of the minimal residual method (GMRES) as applied to solving the linear system $Ax=b$ with the preconditioner $B$.

Key words: matrix pencil, localization of spectrum, positive definite matrices, system of linear algebraic equations, iterative solution, minimal residual method, estimate for convergence rate, preconditioning, Krylov subspace.

UDC: 519.614

Received: 20.04.2007
Revised: 26.02.2008


 English version:
Computational Mathematics and Mathematical Physics, 2008, 48:11, 1917–1926

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026