RUS  ENG
Full version
JOURNALS // Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki // Archive

Zh. Vychisl. Mat. Mat. Fiz., 2008 Volume 48, Number 12, Pages 2092–2106 (Mi zvmmf64)

This article is cited in 4 papers

A continuation method for solving symmetric Toeplitz systems

M. Van Barela, Kh. D. Ikramovb, A. A. Chesnokovba

a Department of Computer Science, Katholieke Universiteit Leuven, Celestijnenlaan 200 A, B-3001 Leuven, Belgium
b Faculty of Computational Mathematics and Cybernetics, Moscow State University, Moscow, 119992, Russia

Abstract: A fast algorithm is proposed for solving symmetric Toeplitz systems. This algorithm continuously transforms the identity matrix into the inverse of a given Toeplitz matrix $T$. The memory requirements for the algorithm are $O(n)$, and its complexity is $O(\log n k(T)n\log n)$, where $k(T)$ is the condition number of $T$. Numerical results are presented that confirm the efficiency of the proposed algorithm.

Key words: Toeplitz matrices, circulants, superfast algorithm, continuation method, iterative refinement, eigenvalues.

UDC: 519.612

Received: 29.12.2007
Revised: 22.05.2008


 English version:
Computational Mathematics and Mathematical Physics, 2008, 48:12, 2126–2139

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026