RUS  ENG
Full version
JOURNALS // Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki // Archive

Zh. Vychisl. Mat. Mat. Fiz., 2010 Volume 50, Number 6, Pages 999–1004 (Mi zvmmf4885)

This article is cited in 17 papers

Sharp estimates for the rate of convergence of Fourier series of functions of a complex variable in the space $L\sb 2(D,p(z))$

V. A. Abilova, F. V. Abilovab, M. K. Kerimovc

a Daghestan State University, ul. Gadzhieva 43a, Makhachkala, 367025 Russia
b Daghestan State Technical University, pr. Kalinina 70, Makhachkala, 367015 Russia
c Dorodnicyn Computing Center, Russian Academy of Sciences, ul. Vavilova 40, Moscow, 119991 Russia

Abstract: Sharp estimates are derived for the convergence rate of Fourier series in terms of orthogonal systems of functions for certain classes of complex variable functions, and the Kolmogorov $N$-widths of these classes are determined. These issues find applications in numerical analysis methods.

Key words: orthogonal system of functions, completeness, Fourier series in terms of orthogonal systems, generalized modulus of continuity, Kolmogorov $N$-width, sharp estimates of convergence rate.

UDC: 519.651

Received: 06.10.2009


 English version:
Computational Mathematics and Mathematical Physics, 2010, 50:6, 946–950

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026