RUS  ENG
Full version
JOURNALS // Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki // Archive

Zh. Vychisl. Mat. Mat. Fiz., 2010 Volume 50, Number 4, Pages 725–745 (Mi zvmmf4865)

This article is cited in 2 papers

Stability of a traveling-wave solution of the Cauchy problem for the Korteweg–de Vries–Burgers equation

A. V. Kazeĭkina

Faculty of Computational Mathematics and Cybernetics, Moscow State University, Moscow, 119992, Russia

Abstract: The asymptotic behavior of the solution to the Cauchy problem for the Korteweg–de Vries–Burgers equation $u_t+(f(u))_x+au_{xxx}-bu_{xx}=0$ as $t\to\infty$ is analyzed. Sufficient conditions for the existence and local stability of a traveling-wave solution known in the case of $f(u)=u^2$ are extended to the case of an arbitrary sufficiently smooth convex function $f(u)$.

Key words: Korteweg–de Vries–Burgers equation, traveling-wave solution, asymptotic behavior of the Cauchy problem solution.

UDC: 519.634

Received: 26.11.2009


 English version:
Computational Mathematics and Mathematical Physics, 2010, 50:4, 690–710

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026