RUS  ENG
Full version
JOURNALS // Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki // Archive

Zh. Vychisl. Mat. Mat. Fiz., 2010 Volume 50, Number 4, Pages 699–706 (Mi zvmmf4862)

This article is cited in 11 papers

The Cauchy problem for a quasilinear parabolic equation with a large initial gradient and low viscosity

S. V. Zakharov

Institute of Mathematics and Mechanics, Ural Division, Russian Academy of Sciences, ul. S. Kovalevskoi 16, Yekaterinburg, 620219 Russia

Abstract: The Cauchy problem for a quasilinear parabolic equation with a small parameter $\varepsilon$ multiplying the highest derivative is considered. The derivative of the initial function is on the order of $O(1/\rho)$, where $\rho$ is another small parameter. Asymptotic expansions of the solution in powers of $\varepsilon$ and $\rho$ are constructed in various forms.

Key words: Cauchy problem, quasilinear parabolic equation, small parameter multiplying the highest derivative, asymptotic expansion in small parameters.

UDC: 519.633

Received: 26.10.2009


 English version:
Computational Mathematics and Mathematical Physics, 2010, 50:4, 665–672

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026