Abstract:
A class of singularly perturbed nonlinear integro-differential problems with solutions involving internal transition layers (contrast structures) is considered. An asymptotic expansion of these solutions with respect to a small parameter is constructed, and the stability of stationary solutions to the associated integro-parabolic problems is investigated. The asymptotics are substantiated using the asymptotic method of differential inequalities, which is extended to the new class of problems. The method is based on well-known theorems about differential inequalities and on the idea of using formal asymptotics for constructing upper and lower solutions in singularly perturbed problems with internal and boundary layers.