Abstract:
The general nonlinear self-adjoint eigenvalue problem for a differential algebraic system of equations on a half-line is examined. The boundary conditions are chosen so that the solution to this system is bounded at infinity. Under certain assumptions, the original problem can be reduced to a self-adjoint system of differential equations. After certain transformations, this system, combined with the boundary conditions, forms a nonlinear self-adjoint eigenvalue problem. Requirements for the appropriate boundary conditions are clarified. Under the additional assumption that the initial data are monotone functions of the spectral parameter, a method is proposed for calculating the number of eigenvalues of the original problem that lie on a prescribed interval of this parameter.
Key words:singular differential algebraic system of equations, nonlinear self-adjoint eigenvalue problem, eigenvalue, numerical method for solving the eigenvalue problem.