Abstract:
A nonlinear self-adjoint eigenvalue problem for the general linear system of ordinary differential equations is examined on an unbounded interval. A method is proposed for the approximate reduction of this problem to the corresponding problem on a finite interval. Under the assumption that the initial data are monotone functions of the spectral parameter, a method is given for determining the number of eigenvalues lying on a prescribed interval of this parameter. No direct calculation of eigenvalues is required in this method.
Key words:ordinary differential equation, nonlinear self-adjoint eigenvalue problem, eigenvalues, numerical method for determining the number of eigenvalues.