RUS  ENG
Full version
JOURNALS // Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki // Archive

Zh. Vychisl. Mat. Mat. Fiz., 2009 Volume 49, Number 8, Pages 1416–1436 (Mi zvmmf4735)

This article is cited in 11 papers

The Richardson scheme for the singularly perturbed parabolic reaction-diffusion equation in the case of a discontinuous initial condition

G. I. Shishkin

Institute of Mathematics and Mechanics, Ural Division, Russian Academy of Sciences, ul. S. Kovalevskoi 16, Yekaterinburg, 620219, Russia

Abstract: The Dirichlet problem for a singularly perturbed parabolic reaction-diffusion equation with a piecewise continuous initial condition in a rectangular domain is considered. The higher order derivative in the equation is multiplied by a parameter $\varepsilon^2$, where $\varepsilon\in(0,1]$. When $\varepsilon$ is small, a boundary and an interior layer (with the characteristic width $\varepsilon$) appear, respectively, in a neighborhood of the lateral part of the boundary and in a neighborhood of the characteristic of the reduced equation passing through the discontinuity point of the initial function; for fixed $\varepsilon$, these layers have limited smoothness. Using the method of additive splitting of singularities (induced by the discontinuities of the initial function and its low-order derivatives) and the condensing grid method (piecewise uniform grids that condense in a neighborhood of the boundary layers), a finite difference scheme is constructed that converges $\varepsilon$-uniformly at a rate of $O(N^{-2}\ln^2+N_0^{-1})$, where $N+1$ and $N_0+1$ are the numbers of the mesh points in $x$ and $t$, respectively. Based on the Richardson technique, a scheme that converges $\varepsilon$-uniformly at a rate of $ON^{-3}+N_0^{-2})$ is constructed. It is proved that the Richardson technique cannot construct a scheme that converges in $\varepsilon$-uniformly in $x$ with an order greater than three.

Key words: singularly perturbed boundary value problem, parabolic reaction-diffusion equation, piecewise continuous initial condition, grid approximation, method of additive splitting of singularities, special grids, $\varepsilon$-uniform convergence, Richardson technique.

UDC: 519.633

Received: 20.10.2008


 English version:
Computational Mathematics and Mathematical Physics, 2009, 49:8, 1348–1368

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026