RUS  ENG
Full version
JOURNALS // Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki // Archive

Zh. Vychisl. Mat. Mat. Fiz., 2009 Volume 49, Number 6, Pages 966–980 (Mi zvmmf4700)

This article is cited in 14 papers

Sharp estimates for the convergence rate of Fourier series in terms of orthogonal polynomials in $L_2((a,b),p(x))$

V. A. Abilova, F. V. Abilovab, M. K. Kerimovc

a Dagestan State University, ul. Gadzhieva 43a, Makhachkala, 367025, Russia
b Dagestan State Technical University, pr. Kalinina 70, Makhachkala, 367015, Russia
c Dorodnicyn Computing Center, Russian Academy of Sciences, ul. Vavilova 40, Moscow, 119991, Russia

Abstract: Sharp estimates are given for the convergence rate of Fourier series in terms of classical orthogonal polynomials in some classes of functions characterized by a generalized modulus of continuity in the space $L_2((a,b),p(x))$. Expansions in terms of Laguerre, Hermite, and Jacobi polynomials are considered.

Key words: Fourier series, generalized modulus of continuity, width, generalized derivatives, expansions in terms of Laguerre, Hermite, Jacobi polynomials, convergence of series.

UDC: 519.651

Received: 05.12.2008
Revised: 28.12.2008


 English version:
Computational Mathematics and Mathematical Physics, 2009, 49:6, 927–941

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026