Abstract:
Propagation of small perturbations in a two-layer inviscid stratified fluid is studied. It is assumed that the higher density fluid occupies the lower unbounded half-space, while the lower density fluid occupies the upper unbounded half-space. The source of the excitation is a plane wave traveling along the interface of the fluids. An explicit analytical solution to the problem is constructed, and its existence and uniqueness are proved. The long-time wave pattern developing in the fluids is analyzed.
Key words:stratified fluid, stream function, internal waves, surface waves, fluid dynamic equation, existence and uniqueness theorems, analytical solution.