RUS  ENG
Full version
JOURNALS // Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki // Archive

Zh. Vychisl. Mat. Mat. Fiz., 2008 Volume 48, Number 7, Pages 1214–1229 (Mi zvmmf4562)

This article is cited in 32 papers

On the behavior of solutions to the Cauchy problem for a degenerate parabolic equation with inhomogeneous density and a source

A. V. Martynenko, A. F. Tedeev

Institute of Applied Mathematics and Mechanics, National Academy of Sciences of Ukraine, ul. R. Lyuksemburg 74, Donetsk, 340114, Ukraine

Abstract: The Cauchy problem for a degenerate parabolic equation with a source and inhomogeneous density of the form
$$ \rho(x)\frac{\partial u}{\partial t}=\operatorname{div}(u^{m-1}|Du|^{\lambda-1}Du)+\rho(x)u^p. $$
is studied. Time global existence and nonexistence conditions are found for a solution to the Cauchy problem. Exact estimates of the solution are obtained in the case of global solvability.

Key words: equations with inhomogeneous density, degenerate parabolic equation, blowup solution, existence and nonexistence theorems.

UDC: 519.633

Received: 15.01.2007


 English version:
Computational Mathematics and Mathematical Physics, 2008, 48:7, 1145–1160

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026