Abstract:
The problem of comparison of approximations (approximate solutions to a vector optimization problem) obtained using different numerical methods is considered. In the absence of a priori information about the set of weakly efficient vectors, a scalar function is introduced that enables pair-wise comparison of approximations and establishes a binary preference relation according to which the approximations close (in the sense of the Hausdorff distance) to the set containing all possible efficient vectors are preferable to other approximations.
Key words:approximate solutions in vector optimization problems, comparison of different approximations.