RUS  ENG
Full version
JOURNALS // Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki // Archive

Zh. Vychisl. Mat. Mat. Fiz., 2006 Volume 46, Number 12, Pages 2166–2177 (Mi zvmmf364)

This article is cited in 21 papers

Asymptotic behavior of the optimal cost functional for a rapidly stabilizing indirect control in the singular case

A. R. Danilin

Institute of Mathematics and Mechanics, Ural Division, Russian Academy of Sciences, ul. S. Kovalevskoi 16, Yekaterinburg, 620219, Russia

Abstract: The optimal control problem for a linear system with fast and slow variables in the form of indirect control with a convex terminal cost functional and a smooth geometric constraint on the control is studied. An asymptotic expansion of the cost functional up to any power of a small parameter is constructed.

Key words: optimal control, terminal cost functional, smooth geometric constraints, small parameter, singular perturbation, asymptotic expansion.

UDC: 519.626.2

Received: 19.06.2006


 English version:
Computational Mathematics and Mathematical Physics, 2006, 46:12, 2068–2079

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026