RUS  ENG
Full version
JOURNALS // Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki // Archive

Zh. Vychisl. Mat. Mat. Fiz., 2007 Volume 47, Number 2, Pages 245–255 (Mi zvmmf332)

This article is cited in 33 papers

Cauchy problem for a quasilinear parabolic equation with a source term and an inhomogeneous density

A. V. Martynenko, A. F. Tedeev

Institute of Applied Mathematics and Mechanics, National Academy of Sciences of Ukraine, ul. R. Luxemburg 74, Donetsk, 83114, Ukraine

Abstract: The following quasilinear parabolic equation with a source term and an inhomogeneous density is considered:
$$ \rho(x)\frac{\partial u}{\partial t}=\operatorname{div}(u^{m-1}|Du|^{\lambda-1}Du)+u^p. $$
The conditions on the parameters of the problem are found under which the solution to the Cauchy problem blows up in a finite time. A sharp universal (i.e., independent of the initial function) estimate of the solution near the blowup time is obtained.

Key words: inhomogeneous density, degenerate parabolic equation, blowup regime.

UDC: 519.633

Received: 26.05.2006


 English version:
Computational Mathematics and Mathematical Physics, 2007, 47:2, 238–248

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026