RUS  ENG
Full version
JOURNALS // Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki // Archive

Zh. Vychisl. Mat. Mat. Fiz., 1990 Volume 30, Number 6, Pages 803–816 (Mi zvmmf3242)

This article is cited in 1 paper

Non-linear spectra of matrices and extremal problems

A. P. Buslaev

Moscow

Abstract: Theoretical questions and the computational aspects of the search for the spectral values $\lambda$ and vectors $x\in\mathbb R^m\setminus\{0\}$ of a system $A^{\mathrm T}(Ax)_{(q)}=\lambda^q(x)_{(p)}$, where $A$ is a $k\times m$ matrix, $1\le p$, $q<\infty$ are presented. When $p=q=2$ this is simply the problem of determining the singular values of $A$. Nonlinear systems $((p-2)^2+(q-2)^2\ne0)$ arise in many fields of analysis, mechanics and approximation theory.

UDC: 519.614

MSC: Primary 15A18; Secondary 15A60

Received: 27.06.1989


 English version:
USSR Computational Mathematics and Mathematical Physics, 1990, 30:3, 117–126

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026