RUS  ENG
Full version
JOURNALS // Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki // Archive

Zh. Vychisl. Mat. Mat. Fiz., 2008 Volume 48, Number 1, Pages 146–153 (Mi zvmmf200)

This article is cited in 8 papers

The Korteweg–de Vries equation in a cylindrical pipe

V. A. Rukavishnikov, O. P. Tkachenko

Computer Center, Far East Division, Russian Academy of Sciences, ul. Kim Yu Chena 65, Khabarovsk, 680063, Russia

Abstract: A mathematical model of nonlinear wave propagation in a pipeline is constructed. The Korteweg–de Vries equation is derived by determining asymptotic solutions and changing variables. A particular solution to the model equations is found that has the fluid velocity function in the form of a solitary wave. Thus, the class of nonlinear fluid dynamics problems described by the KdV equation is expanded.

Key words: nonlinear waves, hydroelastic vibration propagation in pipelines, mathematical model, Korteweg–de Vries equation, numerical solution method.

UDC: 519.63

Received: 30.03.2007


 English version:
Computational Mathematics and Mathematical Physics, 2008, 48:1, 139–146

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026