RUS  ENG
Full version
JOURNALS // Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki // Archive

Zh. Vychisl. Mat. Mat. Fiz., 1998 Volume 38, Number 2, Pages 239–246 (Mi zvmmf1944)

High accuracy post-processing technique for free boundaries in finite element approximations to the obstacle problems

R. Z. Dautov

Kazan State University

Abstract: A suitable post-processing technique in combined with a finite element approximations to the obstacle problems. If the coincidence set is an interior star-like domain with analytical boundary $F$, we define discrete free boundary thus that it is easily computable and converges in distance to $F$ with a rate $\varepsilon(h)\ln^3(1/h)$, $\varepsilon(h)=h|u-u_k|_{H^1}+\|u-u_h\|_{L_2}$. Our present analysis does not rest on the discrete maximum principle.

UDC: 519.63

MSC: Primary 65K10; Secondary 49J40, 49M15

Received: 15.05.1996

Language: English


 English version:
Computational Mathematics and Mathematical Physics, 1998, 38:2, 230–237

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026