Abstract:
The generalized Swift–Hohenberg equation with an additional quadratic term is studied. Time-stable localized stationary solutions of the pulse and front types are found. It is shown that stationary fronts give rise to traveling fronts, whose branches are also obtained. This study combines theoretical methods for dynamical systems (in particular, the theory of homo-and heteroclinic orbits) and numerical simulation.
Key words:Swift–Hohenberg evolution equation, stable stationary solutions of the pulse and front types, methods of dynamical systems, numerical simulation.