RUS  ENG
Full version
JOURNALS // Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki // Archive

Zh. Vychisl. Mat. Mat. Fiz., 2008 Volume 48, Number 4, Pages 660–673 (Mi zvmmf156)

This article is cited in 6 papers

Approximation of a system of singularly perturbed reaction-diffusion parabolic equations in a rectangle

G. I. Shishkin, L. P. Shishkina

Institute of Mathematics and Mechanics, Ural Division, Russian Academy of Sciences, ul. S. Kovalevskoi 16, Yekaterinburg, 620219, Russia

Abstract: The Dirichlet problem for a system of singularly perturbed reaction-diffusion parabolic equations in a rectangle is considered. The higher order derivatives of the equations are multiplied by a perturbation parameter $\varepsilon^2$, where $\varepsilon$ takes arbitrary values in the interval (0, 1]. When $\varepsilon$ vanishes, the system of parabolic equations degenerates into a system of ordinary differential equations with respect to $t$. When $\varepsilon$ tends to zero, a parabolic boundary layer with a characteristic width $\varepsilon$ appears in a neighborhood of the boundary. Using the condensing grid technique and the classical finite difference approximations of the boundary value problem, a special difference scheme is constructed that converges $\varepsilon$-uniformly at a rate of $O(N^{-2}\ln^2N+N_0^{-1})$, where $N=\min_s N_s$, $N_s+1$ and $N_s+1$ are the numbers of mesh points on the axes $x_s$ and $t$, respectively.

Key words: initial boundary value problem in a rectangle, perturbation parameter $\varepsilon$, system of parabolic reaction-diffusion equations, finite difference approximation, parabolic boundary layer, a priori bounds on the solution and its derivatives, $\varepsilon$-uniform convergence.

UDC: 519.633

Received: 20.04.2007


 English version:
Computational Mathematics and Mathematical Physics, 2008, 48:4, 627–640

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026