Abstract:
Mathieu's equation is solved by an asymptotic averaging method in the fourth approximation for the first to fourth resonance domains and in the third approximation for the zero resonance domain. The general periodic and aperiodic solutions on characteristic curves are found, and the general solution is obtained in instability domains and stability-domain areas adjacent to the characteristic curves. All the solutions are explicitly found in the form of functions of an argument without using the auxiliary parameter employed in Whittaker's method. Simple formulas depending on two parameters of the equation are derived for the characteristic exponent in instability domains and for the frequency of slow oscillations in stability domains near the characteristic curves. The theory is developed by analyzing the resonances exhibited by Mathieu's equation.