RUS  ENG
Full version
JOURNALS // Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki // Archive

Zh. Vychisl. Mat. Mat. Fiz., 2025 Volume 65, Number 12, Pages 1973–1994 (Mi zvmmf12100)

General numerical methods

Estimation of the remainder term of the Appel hypergeometric series $F_2$

S. I. Bezrodnykha, O. V. Dunin-Barkovskayaab

a Federal Research Center "Computer Science and Control" of Russian Academy of Sciences, Moscow
b Lomonosov Moscow State University, P. K. Sternberg Astronomical Institute

Abstract: Integral representations and estimates for the remainder term for the summation of the double hypergeometric Appell series $F_2$ are constructed. The resulting formulas have applications in developing algorithms for computing the Appell functions $F_1$ and $F_3$ in $\mathbb{C}^2$ using analytic continuation formulas. The results have applications to problems in mathematical physics and computational function theory, including the construction of conformal mappings of complicated polygons based on the Christoffel–Schwarz integral.

Key words: Appell hypergeometric functions, analytic continuation formulas, efficient computation of hypergeometric functions, estimations of the remainder terms of the hypergeometric series.

UDC: 517.58

Received: 15.06.2025
Revised: 20.07.2025
Accepted: 19.09.2025

DOI: 10.7868/S3034533225120015


 English version:
Computational Mathematics and Mathematical Physics, 2025, 65:12, 2795–2818

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026