RUS  ENG
Full version
JOURNALS // Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki // Archive

Zh. Vychisl. Mat. Mat. Fiz., 2025 Volume 65, Number 7, Pages 1265–1276 (Mi zvmmf12017)

Partial Differential Equations

On variational settings of the inverse coefficient problems in magnetic hydrodynamics

I. È. Stepanovaa, I. I. Kolotovb, A. V. Shchepetilovb, A. G. Yagolab, A. N. Levashovb

a Institute of Physics of the Earth, Russian Academy of Scienses
b Lomonosov Moscow State University

Abstract: The paper considers the problem of uniqueness of the solution to the inverse problem of determining the viscosity and magnetic viscosity coefficients from a system of partial differential equations describing MHD phenomena. Uniqueness theorems are given in the case of known magnetic field and velocity field of a charged fluid in the zero approximation, as well as in the case of a known total magnetic field.

Key words: uniqueness, magnetic viscosity, inverse coefficient problem, integral representation.

UDC: 519.642

Received: 26.02.2025
Accepted: 23.04.2025

DOI: 10.31857/S0044466925070145


 English version:
Computational Mathematics and Mathematical Physics, 2025, 65:7, 1646–1658

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026