RUS  ENG
Full version
JOURNALS // Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki // Archive

Zh. Vychisl. Mat. Mat. Fiz., 2024 Volume 64, Number 12, Pages 2378–2389 (Mi zvmmf11895)

Partial Differential Equations

On the uniqueness of the finite-difference analogues of the fundamental solution of the heat equation and the wave equation in discrete potential theory

I. È. Stepanovaa, I. I. Kolotovb, A. V. Shchepetilovb, A. G. Yagolab, A. N. Levashovb

a Institute of Physics of the Earth, Russian Academy of Scienses, 123242, Moscow, Russia
b Physics Department, Lomonosov Moscow State University, 119992, Moscow, Russia

Abstract: The paper considers the problem of uniquely determining the fundamental solution of the finite-difference analogs of the wave equation and the heat equation in the framework of the discrete potential theory. Finite-difference fundamental solutions of finite-difference analogues of partial differential equations make it possible to solve direct and inverse problems of reconstructing wave and heat sources in various media from heterogeneous and multi-current information about the corresponding physical fields. The article considers formulations with Dirichlet conditions in three- and four-dimensional Cartesian spaces.

Key words: uniqueness, fundamental solution, discrete heat potential, discrete wave potential.

UDC: 519.642

Received: 10.07.2024
Revised: 10.07.2024
Accepted: 23.08.2024

DOI: 10.31857/S0044466924120114


 English version:
Computational Mathematics and Mathematical Physics, 2024, 64:12, 2893–2904

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026