RUS  ENG
Full version
JOURNALS // Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki // Archive

Zh. Vychisl. Mat. Mat. Fiz., 2024 Volume 64, Number 7, Pages 1253–1267 (Mi zvmmf11790)

This article is cited in 3 papers

Partial Differential Equations

On the uniqueness of determining the mesh fundamental solution of Laplace’s equation in the theory of discrete potential

I. E. Stepanovaa, I. I. Kolotovb, A. G. Yagolab, A. N. Levashovb

a Schmidt Institute of Physics of the Earth, Russian Academy of Sciences, 123242, Moscow, Russia
b Lomonosov Moscow State University, 119992, Moscow, Russia

Abstract: The paper examines the problem of unique determination of the fundamental solution of a mesh analogue of Laplace’s equation within the theory of discrete gravitational potential. The mesh fundamental solution of the finite-difference analogue of Laplace’s equation plays a key role in reconstructing a continuously distributed source of gravitational or magnetic field from heterogeneous and different-precision data obtained at points of a certain mesh set.

Key words: unique determination, fundamental solution, discrete gravitational potential.

UDC: 550.83+550.81

Received: 13.03.2024

DOI: 10.31857/S0044466924070108


 English version:
Computational Mathematics and Mathematical Physics, 2024, 64:7, 1523–1536

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026