RUS  ENG
Full version
JOURNALS // Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki // Archive

Zh. Vychisl. Mat. Mat. Fiz., 2024 Volume 64, Number 6, Pages 914–921 (Mi zvmmf11764)

General numerical methods

On asymptotics of eigenvalues of seven-diagonal Toeplitz matrices

I. V. Voronin

Moscow Institute of Physics and Technology (National Research University), 141700, Dolgoprudnyi, Moscow oblast, Russia

Abstract: Asymptotic formulas are derived that admit a uniform estimate of the remainder for Toeplitz matrices of size $n$ as $n\to\infty$ in the case when their symbol $a(t)$ has the form $a(t)=(t-2a_0+t^{-1})^3$. This result is a generalization of the result of Stukopin et al. (2021), who obtained similar asymptotic formulas for a seven-diagonal Toeplitz matrix with a similar symbol in the case $a_0=1$. The resulting formulas are of high computational efficiency and generalize the classical results of Parter and Widom on asymptotics of extreme eigenvalues.

Key words: Toeplitz matrices, eigenvectors, asymptotic expansions.

UDC: 519.614

Received: 02.09.2024
Accepted: 06.03.2024

DOI: 10.31857/S0044466924060029


 English version:
Computational Mathematics and Mathematical Physics, 2024, 64:6, 1159–1166

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026