RUS  ENG
Full version
JOURNALS // Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki // Archive

Zh. Vychisl. Mat. Mat. Fiz., 2024 Volume 64, Number 5, Pages 842–851 (Mi zvmmf11754)

Mathematical physics

Study and optimization of $N$-particle numerical statistical algorithm for solving the Boltzmann equation

G. Z. Lotovaab, G. A. Mikhailovab, S. V. Rogazinskiiab

a Institute of Computational Mathematics and Mathematical Geophysics, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia
b Novosibirsk State University, 630090, Novosibirsk, Russia

Abstract: The main goal of this work is to check the hypothesis that the well-known $N$-particle statistical algorithm yields a solution estimate for the nonlinear Boltzmann equation with an $O(1/N)$ error. For this purpose, practically important optimal relations between $N$ and the number $n$ of sample estimate values are determined. Numerical results for a problem with a known solution confirm that the formulated estimates and conclusions are satisfactory.

Key words: Monte Carlo method, statistical modeling, Boltzmann equation, $N$-particle Markov chain, molecular chaos, majorizing frequency method.

UDC: 519.634

Received: 27.11.2023
Revised: 27.11.2023
Accepted: 14.01.2024

DOI: 10.31857/S0044466924050121


 English version:
Computational Mathematics and Mathematical Physics, 2024, 64:5, 1065–1075

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026