Abstract:
Unique solvability of systems of linear algebraic equations is studied to which many inverse problems of geophysics are reduced as a result of discretization after applying the method of integral equations or integral representations. Examples of singular and nonsingular systems of various dimensions that arise when processing magnetometric and gravimetric data from experimental observations are discussed. Conclusions are drawn about methods for constructing an optimal network of experimental observation points.
Key words:singular systems of linear algebraic equations, integral representations, unique solvability, Cauchy determinant.