RUS  ENG
Full version
JOURNALS // Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki // Archive

Zh. Vychisl. Mat. Mat. Fiz., 2023 Volume 63, Number 7, Pages 1177–1191 (Mi zvmmf11588)

Partial Differential Equations

Solution blow-up and global solvability of the Cauchy problem for the equation of moderately long longitudinal waves in a viscoelastic rod

Kh. G. Umarovab

a Academy of Sciences of the Chechen Republic, 364061, Grozny, Russia
b Chechen State Pedagogical University, 364068, Grozny, Russia

Abstract: The Cauchy problem for a nonlinear Sobolev-type differential equation modeling moderately long small-amplitude longitudinal waves in a viscoelastic rod is investigated in a space of continuous functions defined on the entire number line that have limits at infinity. Conditions for the existence of a global solution and for finite time solution blow-up are examined.

Key words: longitudinal waves in a viscoelastic rod, nonlinear Sobolev-type equations, global solution, solution blow-up.

UDC: 517.958

Received: 21.12.2022
Revised: 21.12.2022
Accepted: 30.03.2023

DOI: 10.31857/S0044466923070177


 English version:
Computational Mathematics and Mathematical Physics, 2023, 63:7, 1285–1299

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026