RUS  ENG
Full version
JOURNALS // Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki // Archive

Zh. Vychisl. Mat. Mat. Fiz., 2023 Volume 63, Number 1, Pages 123–144 (Mi zvmmf11502)

This article is cited in 2 papers

Partial Differential Equations

On Cauchy problems for nonlinear Sobolev equations in ferroelectricity theory

M. O. Korpusov, R. S. Shafir

Lomonosov Moscow State University

Abstract: Two Cauchy problems for the nonlinear Sobolev equations $\frac{\partial^2}{\partial t^2}\frac{\partial^2u}{\partial x^2_3}+\Delta u=|u|^q$ and $\frac{\partial^2}{\partial t^2}\Delta_\perp u+\Delta u=|u|^q$ are investigated. Conditions are found under which the Cauchy problems have weak generalized local-in-time solutions, and the blow-up conditions for weak solutions of these problems are determined.

Key words: nonlinear Sobolev-type equations, blow-up, local solvability, nonlinear capacity.

UDC: 517.95

Received: 01.08.2021
Revised: 05.05.2022
Accepted: 04.08.2022

DOI: 10.31857/S0044466922120092


 English version:
Computational Mathematics and Mathematical Physics, 2022, 62:12, 2091–2111

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026