Abstract:
The problem of cubic spline interpolation on Bakhvalov meshes for functions with high gradients is considered. Error estimates are obtained in the class of functions with high gradients in an exponential boundary layer. According to these estimates, the error of a spline can increase indefinitely as a small parameter tends to zero for a fixed number of grid nodes. A modified cubic interpolation spline is proposed, the error of which has an $O(N^{-4})$ estimate uniformly with respect to the small parameter, where $N$ is the number of grid nodes.