RUS  ENG
Full version
JOURNALS // Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki // Archive

Zh. Vychisl. Mat. Mat. Fiz., 2020 Volume 60, Number 4, Pages 652–662 (Mi zvmmf11064)

This article is cited in 4 papers

Optimization of a finite-difference scheme for numerical solution of the Helmholtz equation

V. I. Kostin, S. A. Solovyev

Institute of Geology and Geophysics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090 Russia

Abstract: In this article, we propose an optimization method for a difference scheme for the numerical solution of the Helmholtz equation, applicable for any ratio of the grid steps. In the range of the number of points per wavelength of practical interest, the dispersion error of the optimal scheme is comparable with the error of higher order schemes known in the literature.

Key words: Helmholtz equation, finite-difference schemes, numerical dispersion, optimization.

UDC: 519.632

Received: 14.11.2019
Revised: 14.11.2019
Accepted: 16.12.2019

DOI: 10.31857/S0044466920040110


 English version:
Computational Mathematics and Mathematical Physics, 2020, 60:4, 641–650

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026