RUS  ENG
Full version
JOURNALS // Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki // Archive

Zh. Vychisl. Mat. Mat. Fiz., 2020 Volume 60, Number 1, Pages 118–119 (Mi zvmmf11021)

This article is cited in 6 papers

High accuracy trigonometric approximations of the real Bessel functions of the first kind

A. Cuyta, Wen-shin Leeab, Min Wuc

a Universiteit Antwerpen, Dept. of Mathematics and Computer Science, Middelheimlaan 1, B-2020 Antwerpen, Belgium
b University of Stirling, Computing Science and Mathematics, Stirling FK9 4LA, Scotland, UK
c East China Normal University, School of Computer Science and Software Engineering, Shanghai Key Laboratory of Trustworthy Computing, Shanghai 200062, P.R. China

Abstract: We construct high accuracy trigonometric interpolants from equidistant evaluations of the Bessel functions ${{J}_{n}}(x)$ of the first kind and integer order. The trigonometric models are cosine or sine based depending on whether the Bessel function is even or odd. The main novelty lies in the fact that the frequencies in the trigonometric terms modelling ${{J}_{n}}(x)$ are also computed from the data in a Prony-type approach. Hence the interpolation problem is a nonlinear problem. Some existing compact trigonometric models for the Bessel functions ${{J}_{n}}(x)$ are hereby rediscovered and generalized.

UDC: 519.651

Received: 31.07.2019
Revised: 30.08.2019
Accepted: 18.09.2019

Language: English

DOI: 10.31857/S0044466920010093


 English version:
Computational Mathematics and Mathematical Physics, 2020, 60:1, 119–127

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026