RUS  ENG
Full version
JOURNALS // Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki // Archive

Zh. Vychisl. Mat. Mat. Fiz., 2020 Volume 60, Number 1, Pages 116–117 (Mi zvmmf11020)

This article is cited in 1 paper

Matrices of scalar differential operators: divisibility and spaces of solutions

S. A. Abramova, M. A. Barkatoub, M. Petkovšekc

a Dorodnicyn Computing Center of Federal Research Center "Computer Science and Control" of the Russian Academy of Science, Vavilova str., 40, Moscow, 119333, Russia
b University of Limoges, CNRS, XLIM UMR 7252, MATHIS, 123, Av. A. Thomas, 87060 Limoges cedex, France
c University of Ljubljana, Faculty of Mathematics and Physics, Jadranska, 19, SI-1000, Ljubljana, Slovenia

Abstract: We investigate the connection between divisibility of full-rank square matrices of linear scalar differential operators over some differential field $K$, and the solution spaces of these matrices over the universal Picard–Vessiot extension of $K$. We establish some properties of the solution spaces of the greatest common right divisor and the least common left multiple of such matrices.

Key words: computer algebra algorithms, differential operator matrices, divisibility of square matrices of differential operators, solution space, greatest common right divisor, least common left multiple.

UDC: 517.929

Received: 20.07.2019
Revised: 31.08.2019
Accepted: 18.09.2019

Language: English

DOI: 10.31857/S0044466920010044


 English version:
Computational Mathematics and Mathematical Physics, 2020, 60:1, 109–118

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026