RUS  ENG
Full version
JOURNALS // Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki // Archive

Zh. Vychisl. Mat. Mat. Fiz., 2018 Volume 58, Number 7, Pages 1073–1083 (Mi zvmmf10744)

This article is cited in 1 paper

The Bauer-type factorization of matrix polynomials revisited and extended

Alexander Malysheva, Miloud Sadkaneb

a University of Bergen, Department of Mathematics, Bergen, Postbox 7803, Norway
b Université de Brest, CNRS–UMR 6205, Laboratoire de Mathématiques de Bretagne Atlantique, Brest Cedex 3, 6, Av. Le Gorgeu, 29238 France

Abstract: For a Laurent polynomial $a(\lambda)$, which is Hermitian and positive definite on the unit circle, the Bauer method provides the spectral factorization $a(\lambda)=p(\lambda)p^*(\lambda^{-1})$, where $p(\lambda)$ is a polynomial having all its roots outside the unit circle. Namely, as the size of the banded Hermitian positive definite Toeplitz matrix associated with the Laurent polynomial increases, the coefficients at the bottom of its Cholesky lower triangular factor tend to the coefficients of $p(\lambda)$. We study extensions of the Bauer method to the non-Hermitian matrix case. In the Hermitian case, we give new convergence bounds with computable coefficients.

Key words: Bauer-type method, spectral factorization, Wiener–Hopf factorization, banded Toeplitz matrix.

UDC: 519.61

Received: 14.11.2016
Revised: 07.02.2017

DOI: 10.31857/S004446690000371-9


 English version:
Computational Mathematics and Mathematical Physics, 2018, 58:7, 1025–1034

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026