RUS  ENG
Full version
JOURNALS // Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki // Archive

Zh. Vychisl. Mat. Mat. Fiz., 2016 Volume 56, Number 10, Pages 1750–1753 (Mi zvmmf10470)

Computation of eigenfunctions and eigenvalues for the Sturm–Liouville problem with Dirichlet boundary conditions at the left endpoint and Neumann conditions at the right endpoint

M. M. Khapaev, T. M. Khapaeva

Faculty of Computational Mathematics and Cybernetics, Moscow State University, Moscow, Russia

Abstract: A functional-based variational method is proposed for finding the eigenfunctions and eigenvalues in the Sturm–Liouville problem with Dirichlet boundary conditions at the left endpoint and Neumann conditions at the right endpoint. Computations are performed for three potentials: $\sin((x-\pi)^2/\pi)$, $\cos(4x)$, and a high nonisosceles triangle.

Key words: Sturm–Liouville problem, method for computing eigenvalues and eigenfunctions, variational computational method.

UDC: 519.624.2

Received: 27.10.2015

DOI: 10.7868/S0044466916100100


 English version:
Computational Mathematics and Mathematical Physics, 2016, 56:10, 1732–1736

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026