RUS  ENG
Full version
JOURNALS // Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki // Archive

Zh. Vychisl. Mat. Mat. Fiz., 2016 Volume 56, Number 8, Pages 1536–1540 (Mi zvmmf10444)

Transformations of variables invariant under minimization of binary functions of multivalued arguments

A. V. Panov

Faculty of Computational Mathematics and Cybernetics, Moscow State University, Moscow, Russia

Abstract: A number of transformations are introduced that are invariant under minimization problems and make it possible to reduce the maximum possible number of distinct columns in the matrix of zeros of an arbitrary binary function of multivalued arguments. As a result, simpler disjunctive normal forms are constructed. Complexity bounds for the constructed disjunctive normal forms of arbitrary binary functions of $k$-valued arguments are given.

Key words: disjunctive normal forms, binary functions of multivalued arguments, $k$-valued logic, functions with few zeros, complexity of disjunctive normal forms, invariant transformations of variables.

UDC: 519.7

Received: 02.07.2015

DOI: 10.7868/S0044466916080135


 English version:
Computational Mathematics and Mathematical Physics, 2016, 56:8, 1517–1521

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026