RUS  ENG
Full version
JOURNALS // Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki // Archive

Zh. Vychisl. Mat. Mat. Fiz., 2016 Volume 56, Number 2, Pages 259–274 (Mi zvmmf10343)

This article is cited in 23 papers

Stability of discontinuity structures described by a generalized KdV–Burgers equation

A. P. Chugainovaa, V. A. Shargatovb

a Steklov Mathematical Institute, Russian Academy of Sciences, ul. Gubkina 8, Moscow, 119991, Russia
b National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe sh. 31, Moscow, 115409, Russia

Abstract: The stability of discontinuities representing solutions of a model generalized KdV–Burgers equation with a nonmonotone potential of the form $\varphi(u)=u^4-u^2$ is analyzed. Among these solutions, there are ones corresponding to special discontinuities. A discontinuity is called special if its structure represents a heteroclinic phase curve joining two saddle-type special points (of which one is the state ahead of the discontinuity and the other is the state behind the discontinuity).The spectral (linear) stability of the structure of special discontinuities was previously studied. It was shown that only a special discontinuity with a monotone structure is stable, whereas special discontinuities with a nonmonotone structure are unstable. In this paper, the spectral stability of nonspecial discontinuities is investigated. The structure of a nonspecial discontinuity represents a phase curve joining two special points: a saddle (the state ahead of the discontinuity) and a focus or node (the state behind the discontinuity). The set of nonspecial discontinuities is examined depending on the dispersion and dissipation parameters. A set of stable nonspecial discontinuities is found.

Key words: generalized KdV–Burgers equation, spectral (linear) stability of stationary solutions, special discontinuities.

UDC: 519.634

Received: 18.05.2015

DOI: 10.7868/S0044466916020058


 English version:
Computational Mathematics and Mathematical Physics, 2016, 56:2, 263–277

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026