RUS  ENG
Full version
JOURNALS // Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki // Archive

Zh. Vychisl. Mat. Mat. Fiz., 2015 Volume 55, Number 9, Pages 1493–1502 (Mi zvmmf10262)

This article is cited in 10 papers

An extension of the gradient projection method and Newton's method to extremum problems constrained by a smooth surface

Yu. A. Chernyaev

Kazan Typolev National Research Technical University, ul. Karla Marksa 10, Kazan, 420111, Tatarstan, Russia

Abstract: The gradient projection method and Newton’s method are extended to the case where the constraints are nonconvex and are represented by a smooth surface. Necessary extremum conditions and the convergence of the methods are examined.

Key words: smooth surface, gradient projection method, Newton's method, projection on a nonconvex set, necessary condition for a local minimum, convergence of an algorithm.

UDC: 519.658

Received: 22.04.2014
Revised: 17.12.2014

DOI: 10.7868/S0044466915090082


 English version:
Computational Mathematics and Mathematical Physics, 2015, 55:9, 1451–1460

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026