Abstract:
For linear systems with interval constraints, a method for computing a time-optimal control is proposed. The method is based on transforming a quasi-optimal control. The properties and features of the quasi-optimal control are examined. A technique is described for dividing the domain of initial conditions into reachable sets over different times and for approximating each set by a family of hyperplanes. An iterative method for computing an optimal control with interval constraints is developed. The convergence of the method is proved, and a sufficient condition for the convergence of the computational process is obtained. The radius of local quadratic convergence is found. Numerical results are presented.