RUS  ENG
Full version
JOURNALS // Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki // Archive

Zh. Vychisl. Mat. Mat. Fiz., 2015 Volume 55, Number 4, Pages 550–554 (Mi zvmmf10181)

This article is cited in 4 papers

A bilinear algorithm of length $22$ for approximate multiplication of $2\times 7$ and $7\times 2$ matrices

A. V. Smirnov

Department of Justice, Russian Federal Center of Forensic Examination, Khokhlovskii pereul. 13-2, Moscow, 109028, Russia

Abstract: A bilinear algorithm of bilinear complexity 22 for approximate multiplication of $2\times 7$ and $7\times 2$ matrices is presented. An upper bound is given for the bilinear complexity of approximate multiplication of $2\times 2$ and $2\times n$ matrices ($n\geqslant1$).

Key words: matrix multiplication, fast algorithm for multiplying matrices, bilinear algorithm, approximate bilinear algorithm, bilinear complexity, length of algorithm.

UDC: 519.612

MSC: Primary 68Q25; Secondary 65F99

Received: 16.06.2014
Revised: 26.08.2014

DOI: 10.7868/S0044466915040171


 English version:
Computational Mathematics and Mathematical Physics, 2015, 55:4, 541–545

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026