RUS  ENG
Full version
JOURNALS // Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki // Archive

Zh. Vychisl. Mat. Mat. Fiz., 2015 Volume 55, Number 3, Pages 435–445 (Mi zvmmf10171)

This article is cited in 20 papers

Numerical analysis of soliton solutions of the modified Korteweg–de Vries–sine-Gordon equation

S. P. Popov

Dorodnicyn Computing Center, Federal Research Center "Computer Science and Control" of Russian Academy of Sciences, ul. Vavilova 40, Moscow, 119333, Russia

Abstract: Multisoliton solutions of the modified Korteweg–de Vries–sine-Gordon equation (mKdV-SG) are found numerically by applying the quasi-spectral Fourier method and the fourth-order Runge–Kutta method. The accuracy and features of the approach are determined as applied to problems with initial data in the form of various combinations of perturbed soliton distributions. Three-soliton solutions are obtained, and the generation of kinks, breathers, wobblers, perturbed kinks, and nonlinear oscillatory waves is studied.

Key words: mKdV equation, SG equation, mKdV-SG equation, SGmKdV equation, SPE equation, kink, antikink, breather, wobbler, soliton, multisoliton interaction.

UDC: 519.634

MSC: 65M70

Received: 15.05.2014
Revised: 15.10.2014

DOI: 10.7868/S004446691503014X


 English version:
Computational Mathematics and Mathematical Physics, 2015, 55:3, 437–446

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026