RUS  ENG
Full version
JOURNALS // Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki // Archive

Zh. Vychisl. Mat. Mat. Fiz., 2014 Volume 54, Number 12, Pages 1904–1953 (Mi zvmmf10124)

This article is cited in 12 papers

Singular Riemann–Hilbert problem in complex-shaped domains

S. I. Bezrodnykhab, V. I. Vlasova

a Dorodnicyn Computing Center, Russian Academy of Sciences, ul. Vavilova 40, Moscow, 119333, Russia
b Sternberg Astronomical Institute, Moscow State University, Universitetskii pr. 13, Moscow, 119992, Russia

Abstract: In simply connected complex-shaped domains $\mathcal{B}$ a Riemann–Hilbert problem with discontinuous data and growth condidions of a solution at some points of the boundary is considered. The desired analytic function $\mathcal{F}(z)$ is represented as the composition of a conformal mapping of $\mathcal{B}$ onto the half-plane $\mathbb{H}^+$ and the solution $\mathcal{P}^+$ of the corresponding Riemann–Hilbert problem in $\mathbb{H}^+$. Methods for finding this mapping are described, and a technique for constructing an analytic function $\mathcal{P}^+$ in $\mathbb{H}^+$ in the terms of a modified Cauchy-type integral. In the case of piecewise constant data of the problem, a fundamentally new representation of $\mathcal{P}^+$ in the form of a Christoffel–Schwarz-type integral is obtained, which solves the Riemann problem of a geometric interpretation of the solution and is more convenient for numerical implementation than the conventional representation in terms of Cauchy-type integrals.

Key words: Riemann–Hilbert problem, Cauchy-type integral, conformal mappings, Schwarz–Christoffel integral, hypergeometric functions.

UDC: 519.642

Received: 10.06.2014

DOI: 10.7868/S0044466914120096


 English version:
Computational Mathematics and Mathematical Physics, 2014, 54:12, 1826–1875

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026