RUS  ENG
Full version
JOURNALS // Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki // Archive

Zh. Vychisl. Mat. Mat. Fiz., 2009 Volume 49, Number 4, Pages 681–695 (Mi zvmmf10)

This article is cited in 1 paper

Mortar method for matching grids in a mixed scheme as applied to the biharmonic equation

L. V. Maslovskaya, O. M. Maslovskaya

Odessa National University, Dvoryanskaya ul. 2, Odessa, 65074, Ukraine

Abstract: Nitsche's mortar method for matching grids in the Hermann–Miyoshi mixed scheme for the biharmonic equation is considered. A two-parameter mortar problem is constructed and analyzed. Existence and uniqueness theorems are proved under certain constraints on the parameters. The norm of the difference between the solutions to the mortar and original problems is estimated. The convergence rates are the same as in the Hermann–Miyoshi scheme on matching grids.

Key words: matching of grids, Hermann–Miyoshi scheme, mortar method, convergence rate.

UDC: 519.635.1

Received: 28.03.2008
Revised: 29.06.2008


 English version:
Computational Mathematics and Mathematical Physics, 2009, 49:4, 657–671

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026